Colloid adhesive parameters for chemically heterogeneous porous media.
نویسندگان
چکیده
A simple modeling approach was developed to calculate colloid adhesive parameters for chemically heterogeneous porous media. The area of the zone of electrostatic influence between a colloid and solid-water interface (A(z)) was discretized into a number of equally sized grid cells to capture chemical heterogeneity within this region. These cells were divided into fractions having specific zeta potentials (e.g., negative or positive values). Mean colloid adhesive parameters such as the zeta potential, the minimum and maximum in the interaction energy, the colloid sticking efficiency (α), and the fraction of the solid surface area that contributes to colloid immobilization (S(f)) were calculated for possible charge realizations within A(z). The probability of a given charge realization in A(z) was calculated using a binomial mass distribution. Probability density functions (PDFs) for the colloid adhesive parameters on the heterogeneous surface were subsequently calculated at the representative elementary area (REA) scale for a porous medium. This approach was applied separately to the solid-water interface (SWI) and the colloid, or jointly to both the SWI and colloid. To validate the developed model, the mean and standard deviation of the interaction energy distribution on a chemically heterogeneous SWI were calculated and demonstrated to be consistent with published Monte Carlo simulation output using the computationally intensive grid surface integration technique. Our model results show that the PDFs of colloid adhesive parameters at the REA scale were sensitive to the size of the colloid and the heterogeneity, the charge and number of grid cells, and the ionic strength.
منابع مشابه
Colloid interaction energies for physically and chemically heterogeneous porous media.
The mean and variance of the colloid interaction energy (Φ*) as a function of separation distance (h) were calculated on physically and/or chemically heterogeneous solid surfaces at the representative elementary area (REA) scale. Nanoscale roughness was demonstrated to have a significant influence on the colloid interaction energy for different ionic strengths. Increasing the roughness height r...
متن کاملSensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media
Effective use of colloid transport models for heterogeneous subsurface porous media requires the development of methodologies to identify the key model parameters. The inverse problem of a two-dimensional model for colloid transport in geochemically heterogeneous porous media is systematically investigated in this paper. Sensitivity analysis prior to the parameter identification provided valuab...
متن کاملA novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media.
A two-dimensional model for colloid transport in geochemically and physically heterogeneous porous media is presented. The model considers patchwise geochemical heterogeneity, which is suitable to describe the chemical variability of many surficial aquifers with ferric oxyhydroxide-coated porous matrix, as well as spatial variability of hydraulic conductivity, which results in heterogeneous flo...
متن کاملHysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
Saturated packed column and micromodel transport studies were conducted to gain insight on mechanisms of colloid retention and release under unfavorable attachment conditions. The initial deposition of colloids in porous media was found to be a strongly coupled process that depended on solution chemistry and pore space geometry. During steady state chemical conditions, colloid deposition was no...
متن کاملResolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
Transport of colloidal particles in porous media is governed by the rate at which the colloids strike and stick to collector surfaces. Classic filtration theory has considered the influence of system hydrodynamics on determining the rate at which colloids strike collector surfaces, but has neglected the influence of hydrodynamic forces in the calculation of the collision efficiency. Computation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 28 38 شماره
صفحات -
تاریخ انتشار 2012